IAEA Training in Level 2 PSA

- Failure Modes and Criteria -

MODULE 5:

Outline of Discussion

- Roles of containment structural analysis in Level 2 PSA
- Failure Modes & Mechanisms
 - Methods for determining Failure Criteria
- Research on containment aging

Containment Structural Analysis and Level 2 PSA

• Objectives

- Identify plant-specific failure mechanisms
- Generate realistic values for failure criteria, associated failure locations and leak areas
- Product (result)
 - Conditional probability of failure (fragility curve)

Design versus Failure Pressure

• Design criteria:

- Internal loads generated by conservative analysis of designbasis events
- Incorporate factor-of-safety in structural design to account for construction flaws, etc.
- True failure criteria:
 - Actual failure pressures often exceeds design pressure by factors of 2-5.
 - Failure analysis for Level 2 PSA requires consideration of a wider range of containment loads (e.g., higher temperature)

Use of Fragility Curve in Level 2 PSA

Data Required to Perform Realistic Failure Analysis

- Geometric data
 - General configuration
 - Details of structural discontinuities
 - Penetration details
 - Weld locations

Data Requirements (2)

- Construction materials
 - Rebar, stiffeners, aggregate for concrete
 - Steel type(s) and tension
 - Results of component testing (if any)
 - Seal design/composition

Data requirements (3)

- **Definition of loads**
 - Pressure & temperature history (quasi-static load)

Impulse (dynamic load)

Typical Failure Modes

- Isolation failure or bypass
- Over-pressure (global)
 - Variable temperature histories
 - Hydrogen burn vs sustained heating
- Creep (axial growth)
- Corium-concrete interaction
 - Concrete erosion and penetration
 - Direct contact between debris and steel boundary

Failure Modes (2)

• Blowdown reaction forces

- Thrust loads and pipe movement at penetrations
- Local heating of pressure boundary penetrations or seals
- Localized dynamic loads
 - H₂ detonation or steam explosion

Isolation Failure

- Fault analysis of isolation signal(s), control system, and reliability of valve closure
 - Integrated with Level 1 PSA to properly capture support system dependencies

Over-pressure Failure

- Non-linear finite-element analysis of structural response to internal loads is generally considered the most defensible approach
 - ABAQUS, ADINA, CASTEM, NEPTUNE, NFAP, PAFEC and TEMP-STRESS
- Simpler approaches (e.g., scaling analysis) have been developed and shown to be adequate for certain applications (e.g., seismic margins)
 - [Ref: Nucl. Eng. Design, 79(1)]

Creep

- Typically only a concern for containment designs with constrained steel shells or liners
 - Free-standing steel shell with penetration constraints
 - Accident scenarios with elevated temperatures for <u>long</u> periods of time

Corium-concrete Interaction

- Aggressive ablation of concrete basemat can lead to penetration
 - Usually subterranean
- Debris spreading on containment floor may lead to direct contact with steel liner (true pressure boundary)

Blowdown Reaction Forces

- Reaction forces to failure of reactor coolant system pressure (at high pressure)
 - Reactor vessel failure
 - Pipe breaks (initiating event or induced failure)

Heating of Pressure Boundary Seals or Penetrations

- Coupled heat transfer and structural response analysis at pressure boundary seals and penetrations
 - Must know local geometry and gasket material properties
 - Failure properties tested extensively for typical seal geometries and materials

Dynamic Loads

• Impulse loading typically only a concern for:

- Ex-vessel steam explosions (submerged structure)
- Hydrogen detonations
- Requires realistic fluid-structure interaction model

Older Containments - the effects of aging structures -

Steel Pressure Boundary Corrosion

- Corrosion of steel liners has been reported in several reactor containments with loss of shell thickness as large as 50%.
- Locations vary
- Degradation has been observed in nearly all types of containment designs.

[[]Ref: NUREG/CR-6631]

Older Containments - the effects of aging structures -

Concrete Structure Degradation

- Chemical attack due to sustained exposure to
 - Water in subterranean areas
 - Chemical/oil spills on floors or slabs
- Thermal cycling
- Fatigue/vibration
 - Liner anchors
 - Equipment supports

Concrete wall in flexure and compression

Older Containments

- the effects of aging structures (2) -

Closure gaskets & penetration seals

- Hardening of organic seal materials
- Degradation/cracking of organic and ceramic electrical penetration assemblies
- Intergranular stress corrosion of expansion bellows

Leaks of this type have been detected during periodic containment leak rate testing. Reduced capacity at hightemperatures would be undetected.

Older Containments

- the effects of aging components -

Containment isolation (CI)

- ~80% of CI-component failures reported in NPRDS between 1988-1993 are aging related [Ref: NUREG/CR-6339]
 - Most were not safety-significant
 - Valves and valve-operator failures dominate
 - Combination of long-term environmental stresses and operation/testing stresses
 - Large fraction (~65%) of electric-power operator failures were detected during testing
 - Roughly half of pneumatic operator failures were detected during testing (others during routine maintenance)

Closing Comments

- Evaluation of potential failure modes must be plantspecific.
- Rigorous engineering analysis needed to define realistic containment failure criteria
- Analysis should be based on an as-found condition assessment; not design conditions
 - Current assessment of structure conditions
 - Current data on isolation system performance

